PowerD

PowerD

COLLABORATORS
TITLE -
PowerD
ACTION NAME DATE SIGNATURE
WRITTEN BY October 30, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

PowerD iii

Contents

1 PowerD 1
L1 main . . .o o e e e e e 1
1.2 PowerD.guide - Read This First e 3
1.3 PowerD.guide - Important information 3
1.4 PowerD.guide - Rules of programming inPowerD oo o 4
1.5 help . . o 4
1.6 what e 5
1.7 values o e 6
1.8 SINGS . . . o o o e e e e e e e 7
1.9 const. . . o . e e 8
10 def . . o 9
LI1 Macro o e e e 11
L12 LyPes . o o o e e e e e 12
I3 object o e e 14
L14 equa o e e e e 15
1.15 single e 17
1.16 PowerD.guide - Constant equations oLt e e e e e e 18
1.17 PowerD.guide - Function using o ot i e e e e e e e 19
1.18 PowerD.guide - Returning values L 19
1.19 PowerD.guide - PROC definition e 19
1.20 PowerD.guide - REPROC returning values e 20
1.21 PowerD.guide - Using MODULES e e 20
1.22 emodule e 21
123 XCePL . . . o o e e e e e e 22
1.24 global 22
125 00 . o o o 23
1.26 PowerD.guide - Polymorphism e 24
1.27 PowerD.guide - LOOP definition e 25
1.28 PowerD.guide - FOR definition e e 26
1.29 while e 26

PowerD iv
1.30 PowerD.guide - REPEAT definition e 27
1.31 PowerD.guide - IF definition e e 28
1.32 select . . . o o e e e 29
133 do . . 30
1.34 then o L 30
L35 eXit . . o o e e 30
136 Jump 31
137 newend e e 31
1.38 Tibrary o e e 33
1.39 Linklib o e e 34
140 ifunc L 34
LAL pdIStr . . o o e e e e e 35
142 pdlmath L e 38
LA3 pdlintui oo e 39
144 pdldos o L 39
145 pdImisC o o e e e e e 40
146 ICONSt o e 40
1.47 PowerD.guide - Options e e e e e e e e e 41
1.48 PowerD.guide - Preset user OPTions e 44
1.49 PowerD.guide - NOFPU e 45
150 Cli . o o o 45
LS1 @ITOr . . o o e e e 46
1.52 syntax o e e e 46
1.53 diff . . o e 46
1.54 ccode L e 48
1.55 asmeode e 48
1.56 createhead L 48
1.57 createlib L. e 49
1.58 PowerD.guide - How to create Library Lo 51
1.59 PowerD.guide - How to create binary module 51
1.60 Why . . . e 52
1.61 install L e e 53
1.62 features e e e e 53
1.63 future e 54
1.64 history e 54
1.65 bUES . . . e e 58
1.66 LIMIts o e e e e 58
167 TeqUITES o o o o e e e e e e e e e e e 58
1.68 regiSter e e e 59
1.69 thanxX L e 59
170 author L L e e 59
L71 @SCIl . . o o o o o e e e 60
1.72 PowerD.guide - Index L e 61

PowerD 1/69

Chapter 1

PowerD

1.1 main

PowerD v0.11 (17.1.2000) by Martin Kuchinka
(dc.e: 11066 lines, 361271 bytes)
(please, excuse my poor english)

About this document:

Information
Important information

Rules of programming in PowerD
I need some help

Um, what does it do???
How to write Your own programs in PowerD:

Immediate values
Immediate strings
Constant definition
Variable definition

Macro definition

Types, Pointers, Arrays
OBJECT definition
Equations

Single variable operators
Constant Equations

Function using

PowerD

2/69

fd2m
pr2m

Returning wvalues
Procedure definition
Using MODULEs
External MODULEs
Exceptions

Global data

00 programming
Polymorphism

LOOP definition

FOR definition
WHILE definition
REPEAT definition
IF definition
SELECT definition
DO keyword

THEN keyword
EXIT/EXITIF keyword

JUMP keyword

NEW/END/INC/DEC/NEG/NOT. ..

LIBRARY definition
Linked libraries
Internal functions
Internal constants
Options

CLI/Shell Syntax

Error messages/warnings
Support programs:

Tutorial for novice programmers only:

PowerD

3/69

PowerD syntax

PowerD and AmigaE differences

For experienced programmers only:

How to use C code

How to use Assembler code
How to create Header

How to create LinkLib

How to create Library
NEW

How to create binary module
NEW
Others:

Why I did it

Instalation

Features

Future, next release
README

History

README

Bugs

Limitations

Requirements

Registration

Thanks

Author’s address

1.2 PowerD.guide - Read This First

1.3 PowerD.guide - Important information

Writing this document was/is most difficult work on whole PowerD,

writer, so
please excuse my bad english and in some (many)
think,

I’'m not a

parts quite short description.

<

<_‘)

that if someone want to start programming, (s)he will learn most from examples <>

PowerD 4/69

Here follows some information what describes the dosument format:

Labels are black and bold.
Code parts are white. Special keywords are bold.

Optionals are closed in black []. If there are more optionals, they are <«
separated by /.

Requied optionals are closed in black () and separated by black /.

PROC main ()

DEF [L/UL] a,b=10
FOR a:=0 (TO/DTO) b [STEP 2]
PrintF (' a=\d\n’, a)
ENDFOR
ENDPROC

1.4 PowerD.guide - Rules of programming in PowerD

Here you will get hints, how to write as most efficient as <>
possible, how to use new
features etc. PowerD contains many improvements what other languages misses, but <
there
are no elements of other languages like in AmigaE (list, ada, etc.), PowerD has <+

very
flexible syntax, and allows you to short you source a lot, most important thing <
is
DO
keyword I think:
AmigaE:

b:=Rnd (10)-10

WHILE a<20

EXIT b=15

ENDWHILE

IF b=15 THEN PrintF (’Yes\n’)

PowerD:

b:=Rnd(10)-10

WHILE a<20
EXITIF b=15 DO PrintF (' Yes\n’)
ENDWHILE
1.5 help
Some parts of this document are currently not done, just wait. ¢
Something written in
this document does not work, please email me about it, PowerD is quite large (¢
about 9500

lines=320kb of source code written in AmigaE) and I’'m only man, I can’t know <>
everything,

PowerD 5/69

if You will tell me about that error, I will eliminate it as soon as possible.

As I said, this is quite large project, it takes very much time (especially <+

finding

errors). So, if You want to help me by writing support programs, please email me <>
I

very lack an inteligent c-header-to-d-module converter, it is extremely boring <

work to

rewrite all those c-headers manually. In near future I want to add gui something <
like

StormC has. Maybe VisualD. Everyone who can/want/will help me is welcome.

If you have some ideas/bug-reports/suggestions/etc. please
email
me.

1.6 what

If you see something like:
PowerD v0.1l: Generating(100)...
it converts your source to my tables.

If you see something like:
PowerD v0.1l: Generating(100) in intuition/intuition...
it reads modules.

Then you can see something like:
PowerD v0.1l: Generating...
it regenerates lists of OBJECTs and adds links between OBJECTs.

Then you can see something like:
PowerD v0.1l: Writing(1l2%)...
it writes/optimizes assembler source.

Then you can see something like:
PowerD v0.1l: Cleaning...
it frees all memory allocations.

Then you can see something like:
PowerD v0.1l: Compiling...
it executes phxass to compile assembler source.

Then you can see something like:
PowerD v0.1l: Linking...
it executes phxlnk to link startup header, object files and link libraries.

Then you can see something like:
PowerD v0.1l: Done.

if everything went ok, or:
PowerD v0.1l: Not Done.

if not.

PowerD 6/69
1.7 values
Decimal values:
[-1[0..9]1[0..9]...
limitation: min: —-(2731), max: +(2731)-1

eg.: 1, -12, 123, 0002, -01234

Hexadecimal values:

[-1$[0..9]a..f][0..9]a..f]...
limitation:
signed: min: $80000000, max: ST7Tfffffff
unsigned: min: $00000000, max: Sffffffff
eg.: $1, -$32, S$ffab, S$Sabcdef0l, $002d

Binary values:

[-1%[0]1][0]1]... (you can use upto 32 bits)
eg.: %1, %00001101, %10101011, %11001100

Octal values:

[-1§[0..71[0..7]...
eg.: §123, §12345670

ASCII values:

[_] "#"
where # is arbitrary
string
maximaly 4 characters long
eg.: "A", "AHOJ", "J\no\0", "ok23", "1234"

Float values:

[(-1#1"."#2 [e#3|E#3]

where #1 is number before point, #2 is number after point,

(see:
Types
for limitations)
In PowerD are all float numbers converted to DOUBLEs,
how is it better (DOUBLEs, FLOATs, LONGs, ...)

Value separator:

From v0.10 You are able to use dot character (".")
This

will be usefull for 64bit values where $fedc.ba98.7654.3210 is more readable

then

$fedcba9876543210. This separator can be used only with binary,

#3 1s exponent

and then it is used

in numbers as separators.

hexadecimal and

<_)

H

PowerD 7169

octal numbers (leading with: $, %, §).
From v0.11 You are able to use also decimal/float number separator (", K6 "=ascii <
184)
(on german keyboard: alt+m). This enables sth like: 1,000,123.001=1000123.001, <+
this also
improves number reading.

1.8 strings

Special characters:

AN\ - backslash "\"
\a or '’ - apostrophe "'" (\a only for AmigaE compatibility)
\b - return (ascii 13)
\e - escape (ascii 27)
\n - linefeed (ascii 10)
\qg or " - double quote """ (\g only for AmigaE compatibility)
\t - tabulator (ascii 9)
\v - vertical tabulator (ascii 11)
\! - bell (ascii 7)
\O - zero byte (ascii 0), end of string
\Jx - single character where x is number (
0-255

) of character you want.

Formating characters:

\d - decimal number
\h - hexadecimal number
\c - single character
\u - unsigned decimal number
\'s - string
\1 - used before \s, \h, \d, \u, means left Jjustified
\r - used before \s, \h, \d, \u, means right justified
\z — used before \h, \d, \u with field definition (see below) creates <>
leading
zZeros

You can ofcourse use c-like string format, but the string must start and stop <+
with nmrmn
(apostrophe), not """ (double quote)
Field definition in strings (usable only after \s, \d, \h and \u):
[#] - where # is number of characters to be used for a formating
character

Examples of normal strings:

"bla’

PowerD

8/69

"Hello world!\n’

Examples of formatting strings (use them with PrintF (), StringF () and similar
functions) :
PrintF (' a+b=\d\n’, a+b)

PrintF (' file ’'’'\s’’ not found.\n’,filename)
PrintF (' Address 1is $\z\h[8]\n’, adr)

Examples of \jx using:

"Hello\j1l0’ // is the same as ’"Hello\n’
"Test \jl2345’ // 1s the same as ’'Test {45’
"\3999' // is the same as ’c9’
1.9 const
Description:

Constants are in PowerD defined with one of following keyword: CONST, ENUM,
SET, FLAG.
Constants can be defined nearly everywhere you like in/out-side a procedure.

Syntax of CONST keyword:
CONST name=value [, name2=value2]...
The values can be LONGs or DOUBLEs or their
equations
Examples:
CONST COUNT=10,
LISTSIZE=COUNT*SIZEOQOF_LONG,
PI=3.1415926
Syntax of ENUM keyword:
ENUM name [=value] [, name2 [=value2]]...
ENUM generates list of constants where each next constant is increased by one.

Values
must be LONGs.

Examples:
ENUM YES=-1,NO,MAYBE // YES=-1,NO=0,MAYBE=1
ENUM WHAT, IS, YOUR, NAME, // WHAT=0,IS=1,YOUR=2,NAME=3

MY=10,NAME, IS, PRINCE // MY=10,NAME=11,IS=12,PRINCE=13

<o

<

PowerD 9/69
Syntax of SET keyword:
SET name[=value] [, name2 [=value2]]...
where values are for 32bit numbers from 0 to 31. Each next constant has its bit <+
shifted
left by one. (respectively it is multiplied by two)
Examples:
SET VERTICAL, // VERTICAL=1
SMOOTH, // SMOOTH=2
DIRTY // DIRTY=4
SET CLEAN=5, // CLEAN=32
FAKE, // FAKE=64,
SLOW=10 // SLOW=1024
Syntax of FLAG keyword:
FLAG n_ame[=value] [,n_ame2[=value2]]...
where n_ame is normal name, but it MUST contain "_" character AG_Member, —
FI_Open).
FLAG generates two constants from each the first is same as in SET case, "F"
is
added before the first "_" character and the second like ENUM, but <~
added
before the first "_" character. Values are the same in SET case.
Examples:

FLAG CAR_Fast,
CAR_Auto,
CAR_Comfort,
CAR_Expensive

1.10 def

Description:

Variables can be defined with "DEF" keyword,

outside a

procedure they are global, inside a procedure they are local.

Syntax:
DEF [L/UL/W/UW/B/UB/F/D/S] name[[field]] [=default] [:type]...
DEF name // name is VOID/LONG
DEF name:type // name is

type
DEF name([]:type

type

//
//
//
//

CARF_Fast=1,
CARF_Auto=2,

CARF_Comfort=4,
CARF_Expensive=8,

// name is PTR TO

CARB_Fast=0
CARB_Auto=1
CARB_Comfort=2
CARB_Expensive=3

nearly every where you like,

PowerD 10/69

DEF name[] []:type // name is PTR TO PTR TO
type
DEF name[a]:type // name is array of a
types
DEF name[a,b]:type // name is array of axb
types
with width of a
DEF name[:a]:type // name is PTR TO
type
of width a
DEF name[:a] [:b]:type // name is PTR TO
type
of width a and height b
etc.
(See
Types
to get info about ":" character between brackets)
EDEF name][:typel] // for external variables (see Multiple source <+
projects)

Simplier/Faster variable definition:

DEFL name is same as DEF name:LONG
DEFUL name is same as DEF name:ULONG
DEFW name is same as DEF name:WORD
DEFUW name is same as DEF name:UWORD
DEFB name is same as DEF name:BYTE
DEFUB name is same as DEF name:UBYTE
DEFF name is same as DEF name:FLOAT
DEFD name is same as DEF name:DOUBLE
DEFS name[x] is same as DEF name[x]:STRING

Default values:
Syntax:
DEF name=value[:typel]... // where value is a number/constant/list/string
in local variables is also possible:
DEF name=result[:type]... // where result can be other variable, equation or <
something
// what returns a value/pointer
Each variable can have its initial value/list/string:
DEF num=123:LONG,
float=456.789:FLOAT,
name='Hello World!\n’ :PTR TO CHAR,

list=[12,23,34,45,56] : UNORD

or more complex:

PowerD 11/69

DEF num=12%3+232/6:LONG,
float=31/2.2+76.3:FLOAT,
name='Hello '+
’Amigans!\n’,
list=[[1,2,3]:LONG, [4,5,6] :LONG, [7,8,9] :LONG] :PTR TO LONG

Variables do not must be defined before they are used, if they are global it 1is
definitely unimportant, if they are local there are some limitations:

PROC main ()
PrintF (' n=\d, m=\d\n’,n,m)
DEF n=1

ENDPROC

DEF m=2

is same as:

PROC main ()
DEF n
PrintF (' n=\d, m=\d\n’,n,m)
n:=1

ENDPROC

DEF m=2

it means, that if you want to give to variable default value (n=1), the value <+
will
be given on the place where it is defined (in our case after it was printed)

1.11 macro

It can be used same way as in AmigaE or C/C++. In PowerD must be #define keyword <
used

only as global macros (outside a PROC) Macros are replaced only between PROC and <
ENDPROC.

This means that You can’t use macros like eg. here:

PROC a(b,c) IS macro(b,c)

PROC a (b, c)
ENDPROC macro (b, c)

You have to do it this way:

PROC a (b, c)
DEF r
r:=macro (b, c)
ENDPROC r

each leading "#" MUST start at the beginning of the line (right after linefeed), ¢
rest of
keyword (define, if, endif, ...) must be the first word on line:

PowerD

12/69

Good:

#ifdef DEBUG

define DODEBUG
#else

define NODEBUG
#endif

Bad (syntax error):
#ifdef DEBUG

#define DODEBUG
felse

#define NODEBUG
#endif

Known keywords:

#define name data

— each occurence of ’"name’

- example:

#define Hello PrintF (’Hello\n’)

PROC main ()
Hello
ENDPROC

is the same as:
PROC main ()
PrintF ("Hello\n’)

ENDPROC

#define name (args) data ..

.args

— where args is list of names eg.:

- example:

#define AddThree (a,b,c)
a:=AddThree (1,2, 3)

is the same as:

a:=1x2%3

1.12 types

Known types:

Name: Short: Length:

Epsilon (Accuracy) :

BYTE B 1
UBYTE UB 1
WORD W 2

(axb=*xc)

Min:

-128

-32768

will be replaced with ’‘data’

data
#define name(a,b,c,d)

Max:

+127
255
+32767

PowerD 13/69
UWORD UwW 2 0 65535 1
LONG L 4 -2147483648 +2147483647 1
ULONG UL 4 0 4294967296 1
FLOAT F 4 1.17549435e-38 3.40282347e+38 —

1.19209290e-07
DOUBLE D 8 2.225073858507201e-308 1.797693134862316e+308 —
2.2204460492503131e-16
BOOL - 2 0 non zero -
PTR - 4 32bit address -
PTR TO BYTE 4 32bit address -
PTR TO PTR TO BYTE 4 32bit address -
CHAR B 1 only for AmigaE compatibility 1
INT W 2 only for AmigaE compatibility 1
Multiple pointers:
If you would like to use more then two dimensional fields, you cant do it like <+

above:
field:PTR TO PTR TO PTR TO P
You have to do it like here:
field([]1[]1[][]:LONG
field[][]:PTR TO PTR TO LONG
(these are the same)

Multiple arrays:

DEF field[10,20] :LONG
field[3,4]:=123

is the same as:

DEF field[10%x20] :LONG
field[4x10+3]:=123

TR TO

Multiple arrays through pointers:

The two examples above allocat
do it

also without memory allocation
PROCedures) :

Is enough to add before the fi

DEF field[:10, :20] :LONG

memory allocation for field

field[3,4]1:=123

is the same as:

DEF field:PTR TO LONG

es 10x20%SIZEOF_LONG bytes of memory,
(good when using fields as arguments in <>

rst field size specification character ":"

but you can

<_)

PowerD

memory allocation for field

field[4x10+3]:=123

This allocates nothing, but stores information about field width.

1.13 object

Description:

Object 1is something like field of types or typed memory.

Syntax:

OBJECT name [OF objectname]

var[[sizel]l [:typel,

Multiple name:

FEach item in object can have upto 16 names,

"1’ sign.

OBJECT Point
X|x|R|r:FLOAT,
Y|y|Glg:FLOAT,
Z|1z|B|lb:FLOAT

Unions:

This is very useful, if you want to use one object to store different types of ¢

values

in same object but different memory block.

OBJECT Help

Type :UWORD,

NEWUNION AmigaGuide
File:PTR TO UBYTE,
Node:PTR TO UBYTE

UNION LocalHelp
Text :PTR TO UBYTE,
Length:UWORD

ENDUNION,

HelpTitle:PTR TO UBYTE

This will generate have
between

//
//
//
//
//
//
//
//
//

length of 14 bytes:

help type
amigaguide help
file name

node name

inlined help
pointer to text
length of the text
end of the union
title of the help

NEWUNION and ENDUNION has the same start offset

UNION

starts on even address, so i1f the address is odd,

PowerD

all of these must be separated by <

Type has 2 bytes, each UNION <>
(in this case it is 2).

one byte is skipped.

PowerD 15/69

finds the longest UNION and adds it’s length to the UNION offset (in this case <>
has

AmigaGuide 8 bytes and LocalHelp 6 bytes, 8 bytes used). Next item starts on <
this

address.

ATTENTION: see the commas, those have to be used exactly.
Pad bytes:

Each non BYTE/UBYTE item must start on even address:

OBJECT xxXXx // SIZEOF_xxx = 6 bytes
a:BYTE, // offset=0
b:BYTE, // offset=1
Cc:BYTE, // offset=2
d:WORD // offset=4

Linked objects:

OBJECT PointList OF Point
Next :PTR TO Point,
Prev:PTR TO Point

is the same as:

OBJECT PointList
X|x|R|r:FLOAT,
Yly|Glg:FLOAT,
Z|z|B|b:FLOAT,
Next :PTR TO Point,
Prev:PTR TO Point

Object sizes:

With each object is generates one constant called SIZEOF_xxx, where xxx 1s <&
object
name, this constant contains the object length in bytes.

1.14 equa

You can use equations with decimal numbers only, float numbers <
only and combinations

Operator priorities:

Operators with higher priority will be processed before operators with lower <
priority:
x:=14+2%3 // 2 will be multiplied with 3, result will be added to 1 and <+
result
// will be copied to x.

PowerD

16 /69

x—-=1<<2%3
by 3

Operator

l'l, OR

&&, AND

NOR

NAND
=,<>,>,<,>=,<=

!

&

<<

>>

<| or |<
>| or |>

The priority
more

compatible wot

Assigning op

Operator

<|: or |<:
>|= or |>=

Equation exa

// 1 will be shifted by 2 to the left,

// and result will be subtracted from x.
This is true only if You use DPRE OPTion.

Name
OPTions

Logical OR
Logical AND
Logical NOR
Logical NAND
Conditions
Plus
Minus
Multiply
Divide
Modulo
NOFPU

|

decimals

Bit EOR

Bit AND
Shift Left
Shift Right
Rotate Left
Rotate Right

is for each of DPRE,

h other languages

erators:

Name
Copy
Add
Subtract
Multiply
Divide
Modulo
NOFPU

| =
Bit EOR
Bit AND
Copy NOTed
Shift Left
Shift Right
Rotate Left
Rotate Right
Swap

mples:

Priority
D,C,AE

~
~
~

~
~
~

~
~
~

~
~
~

~
~
~

~
~

S D W W NP PR
O‘\CT\O‘\U'I‘U'INI—‘I—‘HH
U'IU'IU'\OJLJNI—‘I—‘I—‘H
U)U)U)(A):A)NHHHH

~

~
~
~

~
~
~

~
~
~

w
s
o+
@]
el

~
~

~
~
~

~
~

~
~
~

oy O O O U1 U
~

~

~

wW W W W s s
~

O Oy O) O) B >
~

w w w w w w

~

Comment

Comment
See

result will be multiplied <+

(a NOR b) equals to Not (a OR b)
(a NAND b) equals to Not (a AND b)

Floats only with fpu. See

5,4,4,3

Possible only
Possible only
Possible only
Possible only
Possible only
Possible only

Floats only with fpu. See

Bit OR

Possible
Possible
Possible
Possible
Possible
Possible
Possible

only
only
only
only
only
only
only

Possible only with <+

with
with
with
with
with
with

(I know APRE is quite useless,

decimals
decimals
decimals
decimals
decimals
decimals

CPRE, APRE and EPRE different, this is to be <«

but...)

Possible only with decimals

with decimals
with decimals
with decimals
with decimals
with decimals
with decimals
with decimals

This is only for same types

PowerD 17 /69

DEF a,b,c

a:=10 // a=10

b:=a\4 // b=2

c:=a>>2 // c=2

at+=b+3x*c // a=18

a:=:c // c=18, a=2

b:=a+3+c-= // c=6, b=11

1.15 single

Operator
+

&
++

Negation:

Notation:

Name
Useless
NEGation
NOTation (?)
Address
Addition
Subtraction

Comment
Only for you :")

Possible multiple subtractions
Possible multiple subtractions

// b=4

Returns inversed (bit) wvariable

a:=16

b:=~a

b~=a
Address:

// a=$00000010
// b=Sffffffef
// b=$ffffffef

Returns address of the variable

b:=¢a

ATTENTION:
b&=a

On address:

// b contains address of a

// this is not an address,

Returns long on address in the variable

(see below)
(see below)

but Bit AND

// b contains long on address in a

Post/Pre addition/subtraction:

PowerD 18/69

If ++ or —— are after the variable then returned value is the contain of <
variable, then

is the (number of ++ or —— minus 1)*1 added/subtracted to/from the variable.

If ++ or —-—- are before the variable then is the (number of ++ or —-- minus 1)x1 <+
added/

subtracted to/from the variable and result is the returning value.

a:=10 // a=10

a—-— // a=9

a-——- // a=6

a++ // a=7

b:=a++ // b=7, a=8
b:=+++a // b=10, a=10

16 PowerD.guide - Constant equations

Constant equations are the same as

Equations
, but destination and all
members must be constants. Only possible assign operator is "=" and it can be <

used only
in:

- CONST, ENUM, SET, FLAG keywords to define constants.

- default variable sizes like: DEF a[constant_equation] :LONG
- default values in arguments in functions and procedures

- default return values in procedures

— OBJECT item sizes

- global list items

- binary data values

Constant functions:

Syntax Name Comment

SIN (a) Sinus Floats only
COS (a) Cosinus Floats only
TAN (a) Tangents Floats only
ASIN (a) Arcus sinus Floats only
ACOS (a) Arcus cosinus Floats only
ATAN (a) Arcus tangents Floats only
SINH (a) Hyperbolic sinus Floats only
COSH (a) Hyperbolic cosinus Floats only
TANH (a) Hyperbolic tangents Floats only
EXP (a) Exponent Floats only
LN (a) Natural logarithm Floats only
LOG (a) Logarithm with base of 10 Floats only
RAD (a) Degree to radian Returns only float
ABS (a) Absolute value

NEG (a) Negate value

FLOOR (a) Floor wvalue Floats only
CEIL(a) Ceil value Floats only
POW (a, b) Power Floats only

SORT (a) Square root Floats only

PowerD

19/69

FAC (a) Factorial

1.17 PowerD.guide - Function using

Description:

PowerD can use currently three types of functions, first are library functions <>

4
second are procedures and third are linked library functions. Each of these is

defined

<_7

in other way, but they all can be used alike. Functions can be stand alone like:

Function(a, b, c)
or functions, that returns one or more values:

x:=Function (a, b, c)
x,y,z:=Function(a, b, c)

1.18 PowerD.guide - Returning values

Description:

In PowerD is able to return one or more values from not only functions, it is
possible from FOR, WHILE, IF etc. Each of these has rather different syntax for

returning values.

1.19 PowerD.guide - PROC definition

Description:
How to describe procedure? I really don’t know...

Syntaxes:
PROC name ([list of typed arguments]) [(list of typed results)] IS result
PROC name([list of typed arguments]) [(list of typed results)]

code
[EXCEPT/EXCEPTDO

ecode]

ENDPROC [result]

APROC name ([list of typed registers]) [(list of typed results)]
assembler only code
ENDPROC

Everything between APROC and ENDPROC, is COPIED into output assembler source
code, so

H

PowerD 20/69

if you do a mistake, PowerD will not show an error!!!, only while Compiling... <
pass

PhxAss will leave with error code of 20. I will add some processor for assembler

routines in future, so currently be carefull with it.

Examples:

Following example shows, how useful may be default return values. These are <
the same:

PROC test () (DOUBLE, DOUBLE)
RETURN a,1.1

ENDPROC 1.0,1.1

PROC test () (DOUBLE=1.0,DOUBLE=1.1)
RETURN a

ENDPROC

APROC compute (d0,dl,d2) (LONG)
add.l di1,do

and.1l d2,d0
ENDPROC

1.20 PowerD.guide - REPROC returning values

Description:

1.21 PowerD.guide - Using MODULEs

Description:

With "MODULE’ keyword you can insert any of #?.m or #?.d files. When you use <

more

modules with same name, only the first one will be processed. This keyword can <+
be used

only outside of procedures. Modules should be in ’'DMODULES:’ assigned directory <>
(see:

installation
), but it is possible to insert before module name full path <+
leading with
sign (see below).

14 7

*

Syntax:

MODULE ’"modulel’,’ *module2’, ...

Examples:

PowerD 21/69

MODULE ’dos’
will try to open file ’'DMODULES:dos’ or ’'DMODULES:dos.m’ or ’'DMODULES:dos.d’, <
whereas

MODULE ' «HD5:Sources/module.m’
will try to open only ’HD5:Sources/module.m’.

1.22 emodule

Description:

Externam modules are normal
modules
, which contains information about external
object/library files. Currently global variables, procedures and linked library
functions.

Global variables:

Global variables in external files are defined with ’EDEF’ keyword, with this <
syntax:

EDEF list of typed variables
where variable is external variable name (with following sizes if it is an array ¢

) and
type is normal

type

External procedures:

External procedures are defines in the same was as normal procedures, but <«

leading
with "EPROC’ instead of ’PROC’. All arguments must be defined and all return <
types

must be defined:
EPROC procname (list of typed arguments) [(list of types)]

where procname is external procedure name, vars are variable names (this should <
be
what you like), types must be the same as in procedures.
If you write an external definition of ¢ compiled function, use LPROC keyword.

Linked library functions:
Linked library functions are defined in same way as external procedures, but <

leading
with "LPROC’ instead of ’"EPROC’.

PowerD 22 /69

1.23 except

Description:
Exceptions may be very useful if you do a very complex program. If Raise() <
function
called, arguments will be set as exception and exceptioninfo and it will jump <=
into the
last processed procedure EXCEPT part. If you call Raise() function in except <>

code part,
it will do the same, but into the last previous procedure with EXCEPT part.

Syntax:

PROC xxx ()
code
EXCEPT
excepted-code
ENDPROC

If somewhere in code a Raise () function is used, the excepted-code will be <
processed,
if nowhere excepted-code will be skipped. If you use EXCEPTDO instead of EXCEPT <
keyword,
excepted-code wont be skipped, it will be processed right after code. The <+
following two
pieces of code are the same:

EXCEPTDO
and

Raise (0, 0)
EXCEPT

1.24 global

Description:

This is useful for including a binary data/file that will be available within
program’s code. If such data list will be in a procedure, this list will be <+
over jumped
to avoid mr guru.

Syntax:
BYTE list or string
WORD list

LONG list

If string (BYTE only) wrote, no zero character will be added to the end, you
have to add manualy ’"\0’.

PowerD 23/69

BINARY list of file names

Here will be placed listed files.

To be more usefull, you can sign these static fields with labels.
Example:

rawdata: BINARY ’'ram:data.raw’
BYTE "\O0SVER: v0.1\0’

1.25 o0

Description:

Object Oriented programming (OOP) is currently very limited in PowerD.
If You define an OOP variable like:

DEF xyz:PTR TO obj

where obj is defined in same way as normal

OBJECT
This allows You to define OOP
functions to all OBJECTs (like Window, IntuiMessage, etc.). These functions must <

be
defined as following:

PROC name (args) (result) OF obj

where name, args and result are defined in same way as normal
procedures
and obj
means, that this function will be attached to OBJECT called obj. If function is <>
attached
to an OBJECT, it allows You to use OBJECT’s items as normal variables:

OBJECT testobj
name:PTR TO CHAR,
count : LONG,
weight : DOUBLE

PROC SetName (new:PTR TO CHAR) OF testobj
name :=new

ENDPROC
PROC Reset () OF testobj
name :=’Unnamed’

count:=100
weight:=12.3
ENDPROC
PROC Total () (DOUBLE) OF testobj IS countxweight

PROC main ()
DEF ob:testobj
ob.Reset ()

PowerD 24 /69

ob.SetName (' MarK’)

ob.weight:=78.1

PrintF (' Total: \d\n’,ob.Total())
ENDPROC

1.26 PowerD.guide - Polymorphism

Description:
Polymorphism works in D in two ways. At the first You can use it for calling <
different
procedures with same name (but different arguments) and at the second You can <«

use it via

object oriented programming

Definition:
TPROC procname (1list of typed args)

the rest is same as in normal
procedures

Difference between PROC and TPROC:

It is very simple. If You define procedure via TPROC, no type conversions will ¢
be done
for argument parsing, so the types of arguments must equal:

TPROC xxx (x:LONG, y:FLOAT)

TPROC xxx (x:FLOAT,y:FLOAT)

TPROC xxx (a:PTR TO CHAR)

TPROC xxx(a:PTR TO obj)

xxx(1.0,2.3) // this will call the second procedure
xxx(1,2.3) // this will call the first procedure
xxx([1,2,3,4]:0bj) // this will call the fourth procedure
xxx ("Hello’) // this will call the third procedure

If You define TPROCs and PROCs with same names, everything depends on storage <
order in
memory, so be very carefull if You use this.

Allowed arguments:

As You can imagine, not all arguments are allowed. Only allowed are variables,
functions, constants, numbers, strings and pointers.
Equations are not allowed! Also everything like IF, SELECT etc that can return a
value

PowerD 25/69

is not allowed.

1.27 PowerD.guide - LOOP definition

Description:
LOOP is the infinite loop, it means that everything between the LOOP and ENDLOOP
keywords will repeat until RETURN, EXIT or EXITIF keywords are processed.

Syntaxes:
LOOP
code

ENDLOOP

LOOP DO commands // see

DO
keyword
LOOPexp
code
ENDLOOP

LOOP exp DO commands // see
DO
keyword

where exp can be constant, expression, etc.

Returning values:
a:=LOOP // loop is repeated until condition is true and then is b <
copied to a
EXITIF condition IS b // see
EXIT/EXITIF
ENDLOOP
You can also return multiple return values.
Examples:
LOOP 10
PrintF ('Hello\n’)
ENDLOOP
This will write 'Hello’ ten times.
LOOP a:=>5
PrintF (’Hello (\d)\n’,a)
ENDLOOP

This will write:

Hello (5)

PowerD 26 /69

1.28 PowerD.guide - FOR definition

Description:
FOR is a loop, where its variable is after each loop increased/decreased by <+
one.

You can also use floats.

Syntax:
FOR a (TO/DTO) b [STEP c]

code
ENDFOR [list]
FOR a (TO/DTO) b [STEP c] DO commands [IS list] // see

DO
keyword

FOR a (TO/DTO) b [STEP c¢] command [IS list]

where "a’ is something like: n, n:=2, n:=ixj, etc.

Returning values:
Watch ’"list’ in syntax part.

a:=FOR. ..

Early exit:

See
EXIT/EXITIF

1.29 while

Description:

Code between WHILE and ENDWHILE will be repeated until condition after WHILE <
is true.

Syntaxes:

PowerD 27 /1 69

WHILE[N] condition

code
ENDWHILE
While condition is TRUE, code is processed, else program continues after ' <
ENDWHILE’
WHILE[N] condition DO commands // see

DO
While condition is TRUE, code is processed, else program <=
continues on next line.

WHILE[N] conditionl
codel
ELSEWHILE [N] condition2
code?2
ALWAYS
code3
ENDWHILE
While conditionl is TRUE, codel and code3 are processed, if conditionl is <
FALSE and
condition2=TRUE, code2 and code3 are processed, if both conditions are FALSE, <
loop
is stopped and program continues after 'ENDWHILE’. It is ofcourse possible to <+
insert
more ELSEWHILEs or remove ALWAYS.

If You add ’'N’ after WHILE or ELSEWHILE, the result of contition will be negated
WHILE a>b
ELSEWHILE a=0
is the same as
WHILEN a<=b
ELSEWHILEN a
Returning values:
WHILE loop can return list of values, just add the return list after ’'ENDWHILE <
4

keyword:

ENDWHILE list
Early exit:

EXIT/EXITIF keyword

1.30 PowerD.guide - REPEAT definition

PowerD 28 /69

Description:

The code between REPEAT and UNTIL keywords will be processed until the <=
condition is
false, if the condition is true, it will terminate. It is also possible to use
EXITIF
keyword for early termination. If
DO
keyword is used, commands will be processed while
terminating the loop. If
IS
keyword is used, the loop can return a list of wvalues.

Syntax:
REPEAT
code
UNTIL[N] condition [DO commands] [IS list]

If You add ’'N’ after UNTIL, the result of contition will be negated:

UNTIL a>b
UNTIL a=0

is the same as

UNTILN a<=b
UNTILN a

1.31 PowerD.guide - IF definition

Description:
What to say about if? Just try it.
Syntax:

IF[N] condition THEN commands [ELSE commands] // THEN/ELSE can be used as
DO
IF[N] condition

code
[ELSEIF [N] condition

code]
[ELSE

code]
ENDIF

or with DO keyword only
IF[N] condition DO commands

ELSEIF[N] condition DO commands
ELSE DO commands

PowerD 29/69

If You add ’'N’ after IF or ELSEIF, the result of contition will be negated:

IF a>b
IF a=NIL

is the same as

IFN a<=b
IFN a

Example:

IF age<l0 DO PrintF (’'Too young!\n’)
ELSEIF age<70
PrintF (’Yes, what is your name?: ')
ReadStr (stdout, name)
ELSE PrintF (’Too old!\n’)

1.32 select

Description:

Syntax:

SELECT a
CASE b
code
[IS 1list]
[CASE c,d,e DO commands [IS list]]
[CASE f TO g,h [IS list]]

DEFAULT [DO commands/
code]
ENDSELECT [list]

where a, b, ... are equations, functions, constants or something what returns a <
value.

Examples:

SELECT age

CASE 0 TO 17
PrintF (' Young\n’)

CASE 18 TO 50
PrintF (' Adult\n’)

CASE 51 TO 120
PrintF (0ld\n’)

DEFAULT

PowerD 30/69

PrintF ('What???\n’)
ENDSELECT

name :=SELECT Person.ID
CASE 1 IS ’'"Paul’
CASE 2 IS ’Jenny’
CASE 3 IS ’'Peter’
CASE 4 IS '"Mark’
ENDSELECT 'unknown’

1.33 do

Description:

DO keyword in PowerD is quite different from AmigaE, it is not limited to only <
one

command. You can add after DO howmany commands you like, but they must be <+
separated by

semicolon (';')

Syntax:

DO commandl; command2; command3

where commands are functions, equations, etc. Everythink you like.

1.34 then

Description:

Syntax:

1.35 exit

Description:

Via this keywords you can stop loops early. This keywords can be used in
LOOP

4

IF

4

WHILE

4

REPEAT

14
SELECT
and

PowerD 31/69

FOR
loops

The WHILE loop can be stopped before it reaches its end via ’'EXITIF’ keyword:

EXITIF[N] condition [DO code] [(IS/GIVES/GIVING/RETURNING) 1list]
EXIT [DO code] [(IS/GIVES/GIVING/RETURNING) list]

While condition is FALSE nothing happens, if TRUE, code will be processed and <
list of
values will be returned.
Comment :
GIVES, GIVING and RETURNING keywords are all the same as IS keyword, it is <

alloved only
to be more readable.

1.36 jump

Description:
Via JUMP keyword You can skip from one part of procedure to another, but be <
sure that
label exists, PowerD currently doesn’t check it. Never JUMP into loops.
Syntax:
JUMP label

label can be defined everywhere in a procedure:

label:

Comment :

I'm sorry for every body who missed this command in PowerD, PowerD never <=
missed it,
but I have just forgot to include it in documentation. (Thanx to Marco <=
Antoniazzi)

1.37 newend

Description:

These are similar to
single operator
operations, but this can be used
with list of variables like here:

NEG a, b, c

PowerD

32/69

is the same as

Syntax:

NEG
NOT
INC
DEC

TR V)

Description of NEW:

is
is
is
is

the
the
the
the

same
same
same
same

as
as
as
as

NEW calls function

pointer of this chunk to given variable.

raised.

and writes

a:=~a
++a

to allocate a chunk of memory,

DEF a:PTR TO obj,b=20,c=3,d:PTR TO DOUBLE

NEW a

// equals to IF

("MEM")

NEW a[10]
// equals to IF

Raise ("MEM")

NEW a[bx*xc+2]

// equals to IF

THEN Raise ("MEM")

NEW d[10]
// equals to IF

Raise ("MEM")

you can also use list of allocations like:

NEW df[4],alb]

Description of END:

If allocation fails,

with size given as below,

END must be used to deallocate a NEW allocated chunk of memory.

NEW d[4],alb]

END a,

d

H

"MEM" exception is ¢«

(a:=AllocVec (SIZEOF_obj,MEMF_PUBLIC|MEMF_CLEAR))=NIL THEN Raise <

(a:=AllocVec (10%xSIZEOF_obj,MEMF_PUBLIC|MEMF_CLEAR))=NIL THEN <>

(a:=AllocVec ((bxc+2)*SIZEOF_obj, MEMF_PUBLIC|MEMF_CLEAR))=NIL <>

(a:=AllocVec (10%xSIZEOF_DOUBLE, MEMF_PUBLIC|MEMF_CLEAR))=NIL THEN <

PowerD 33/69

1.38 library

Description:

Libraries are on Amiga used very often, they contains many useful functions.
It is ofcourse possible to use them in PowerD.

Syntax:

LIBRARY NameBase

Function([list of typed arguments]) [(list of returning variables)] [=function <>

offset],
Function2 (),
(

)

Function3

Function arguments:

Each argument starts with register (eg.: d0,dl,a0,al, fp0,fpl,...), then should <+
follow

a
type
It is also possible to use ’"LIST OF’ keyword, that is used for

inline lists. This must be last argument, since it may contain different number <
of

arguments. (eg.: PrintF ('\dx\d=\d\n’,a,b,axb) where a, b, a*b are arguments of <
list)

Default argument values:
If you want to use default arguments in library functions like in procedures, <

just
insert after register ’'=value’, where value is a
number
or a
constant

Return values:

All functions in Amiga libraries currently returns maximally one value in DO <
register.

This way you can create your own libraries that wont be so limited. If you wont <>
define

return register/type, register (D0:VOID) will be used.

Library offsets:

Initial library offset is -30 (default Amiga library first function offset).
After each function is this offset decreased by 6.

Examples:

LIBRARY DrawBase
DrawPixel (a0:PTR TO RastPort,d0:WORD, dl:WORD),
DrawLine (a0:PTR TO RastPort,d0:WORD,dl:WORD, d2:WORD, d3:WORD) ,

PowerD 34 /69

ReadPixel (a0:PTR TO RastPort,d0:WORD, dl:WORD) (d0:WORD)=-48,
VTextF (a0:PTR TO RastPort,d0:WORD,dl:WORD,al:PTR TO UBYTE, a2=NIL:PTR TO LONG),
TextF (a0:PTR TO RastPort,d0:WORD,dl:WORD,al:PTR TO UBYTE,a2:LIST OF LONG)=-54

1.39 linklib

Description:

Linked libraries are on amiga used in many programming languages except AmigaE <«

, so I
added linked library support into PowerD. Linked libraries can contain many more <>
or less
useful functions. The defference between linked libraries and normal libraries <«
is that
linked library will add its functions into the your code, so the executables <
will be
quite longer instead of normal libraries’s (usually in libs:) functions will be <>
only
called, those functions needs only to open the library. On other platforms than <
Amiga

are linked libraries more often (somewhere only possible :" ().

Calling functions from linked libraries:

Calling is absolutely the same as calling procedures, only definition slightly <=
defferent.

Definition of functions from linked libraries:

See
How to create LinkLib

1.40 ifunc

PowerD has currently no hardcoded internal functions, all <+
functions are in PowerD.lib.

Inline functions:

ACos (
ASin (
ATan (
ATanh
Cos (a)
EtoX (a)
EtoXml (a)
FAbs (a)
GetExp (a)

a)
a)
a)
(a)

PowerD 35/69

GetMan (a)
Int (a)
IntRZ (a)
Ln (a)
Lnpl (a)
Log(a)
Log2 (a)
Sin(a)
Sgrt (a)
Tan (a)
Tanh (a)
TenToX (a)
TwoToX (a)

These functions are currently inline and hardcoded as fpu instruction.
Some functions wont be compiled with
NOFPU
OPTions.
Linked library functions:
See
linked libraries
PowerD library functions:
String/EString functions
Math functions
Intuition functions

DOS support functions

Miscelaneous functions

1.41 pdistr

Note:
Everywhere is written estring or estr MUST be E-Strings, not normal strings. If <+

you
wont fulfil it, your program may in better case do strange shings and in worse <>

case

crash your computer.

NewEStr (length)
This allocated memory and header for an EString with a length.

RemEStr (estring)
This frees memory and header of estring.

EStrCopy (estring, string, length=-1)
This function copies length characters from string to estring. If length=-1,
whole str is copied.

PowerD 36 /69

StrCopy (string, str, length=-1)
This function copies length characters from str to string. If length=-1,
whole str is copied.
Be sure that the string is long enough.

EStrAdd(estring, string, length=-1)
This function adds string of length to the end of the estring. If length=-1,
whole string is copied.

StrAdd(string, str, length=-1)
This function adds str of length to the end of the string. If length=-1,
whole str is copied.
Be sure that the string is long enough.

EStrLen (estring)
This function returns length of the estring. It is much faster than Strlen(),
but it can be used only with E-Strings.

Strlen (string)
This function returns length of the string. It can be used also for E-Strings,
but it is much slower than EStrLen().

EStrMax (estring)
This function returns maximum length of the estring excluding last zero byte.

SetEStr (estring, length)
This function sets estring’s length to length. It is needed if you do some
operations with the estring withour E-String functions.

ReEStr (estring)
Same as SetEStr () but length is got via zero byte finding.

EStringF (estring, formatstr, arguments)
This function generates formated estring. Where arguments are same types
as used in formatstr.

StringF (string, formatstr, arguments)
This function generates formated string. Where arguments are same types
as used in formatstr.
Be sure that the string is long enough.

LowerStr (string)
All characters of string are converted to lower case.

UpperStr (string)
All characters of string are converted to upper case.

InStr(string, str,startpos=0)
This functions return position of str in string starting at position defined
by startpos or -1 if not found.

MidEStr (estring, string, startpos, length=-1)
This functions copies length characters from string started at startpos to the

estring. If length=-1 all characters are copied.

RightEStr (estring,estr, length)

PowerD 37 /69

This functions copies length right characters from estr string into the estring.

StrCmp (strl,str2, length=-1)
This compares strl and str2 of the length and returns -1 if strl=str2 else 0.
If length=-1 whole string is compared.

OStrCmp (strl, str2, length=-1)
This compares strl and str2 of the length and returns 1 if strl<str2, 0 if strl= <«
str2
and -1 if strl>str2. If length=-1 whole string is compared.

ReadEStr (fh, estring)
This reads string from filehandle fh. String is read byte by byte until "\n" or <
"\O"
reached. All characters are copied into estring.

TrimStr (string)
"\n", "\t", " " and similar characters will be skiped in the string and returned <

str:='\t \nHello\n’
str:=TrimStr (str)

now str contain ’‘Hello\n’ only.
Note: if source was E-String, result is no an E-String.

IsAlpha (byte)
Returns TRUE if byte is an alphabetical letter, otherwise FALSE.

IsNum (byte)
Returns TRUE if byte is a number letter, otherwise FALSE.

IsHexNum (byte)
Returns TRUE if byte is a hexa-decimal number letter, otherwise FALSE.

Val (str:PTR TO CHAR, startpos=0) (LONG)
This functions returns a number which is generated from the str. Currently is <>

able
to use binary(eg: %1011100), hexadecimal (eg: $12ab34dc) and decimal (eg: 123) —
numbers.
If you specify startpos the number generation will start on this position. If <+
string
contains illegal characters this will probably return an illegal value. If the <
str

begins with ’* ’, ’'\n’ or ’"\t’ characters, all of these will be skipped.

RealVal (str:PTR TO CHAR, startpos=0) (DOUBLE)

This function is similar to Val(), but it is usable only with floats. <>
Currently is
able only to convert strings with format of ’'[-]x.y’, so no exponent alloved. If <«
the

str begins with ' ', ’\n’ or ’"\t’ characters, all of these will be skipped.

RealStr (str:PTR TO CHAR, num:DOUBLE, count=1) (PTR TO CHAR)
This function generates str from given num with count of digits after the <+
point.
Currently does not allow exponents.

PowerD 38/69

RealEStr (estr:PTR TO CHAR,num:DOUBLE, count=1) (PTR TO CHAR)
Same as RealStr (), only generates an E-String.

1.42 pdimath

Abs (a)
Returns absolute value of a.

And (a, b)
Returns aé&b.

BitCount (value)
Returns # of bits contained in 32bit value.
BitCount ($0f0) returns 4 : $0f0=%0000.1111.0000
BitCount ($124) returns 3 : $124=%0001.0010.0100

BitSize (value)

This returns size of bit field contained in the 32bit value

BitSize ($2c) returns 4 : $2c¢=%0010.1100
size is this AN

BitSize (5) returns 3 : 5=%101
size is this s

BitSize ($124) returns 7 : $124=%0001.0010.0100
size is this NONANN AN

BizSize(a) equals to HiBit (a)-LoBit (a)

Bounds (a, min, max)
Bounds a with min and max and returns the result. It is the same as:
res:=IF a<min THEN min ELSE IF a>max THEN max ELSE a

EOr (a, b)
Returns a'b.

Even (a)
Returns -1 if a is even else 0.

HiBit (value)
This returns position of highest active bit the 32bit wvalue

LoBit (value)
This returns position of lowest active bit the 32bit wvalue

Max (a, b)
Returns the bigger value of a and b.

Min (a, b)
Returns the smaller value of a and b.

Neg (a)
Returns negated a.

Not (a)
Returns noted a.

PowerD 39/69

0dd (a)
Returns -1 if a is odd else 0.

Or (a, b)
Returns alb.

Rol (a, b)
Returns a rotated left by b bits.

Ror (a, b)
Returns a rotated right by b bits.

Shl (a,b)
Returns a shifted left by b bits.

Shr (a, b)
Returns a shifted right by b bits.

Sign(a)
Returns 1 if a>0, -1 if a<0, else O

Pow (a:DOUBLE, b :DOUBLE)
Returns a”"b. If b=0, 1 is returned.

1.43 pdlintui

WaitIMessage (w:PTR TO Window) (LONG, LONG, LONG, LONG)
This function waits for a message in window specified by w and returns four <
values.
The first is class, second is code, third is qual and fourth is iaddress.

Mouse ()
This function returns %001 if left mouse button is pressed, %010 if right mouse <>
button is
pressed and %100 if middle mouse button is pressed. It can return it’s <«
combinations.

MouseX (w:PTR TO Window)
Returns mouse horizontal position in window w.

MouseY (w:PTR TO Window)
Returns mouse vertical position in window w.

MouseXY (w:PTR TO Window) (LONG, LONG)
Returns mouse position in window w.

1.44 pdldos

FileLength (name:PTR TO CHAR) (LONG)
Returns length of file specified by name or -1 if file doesn’t exists.

Inp (fh) (LONG)

PowerD 40/69

Returns byte read from file handle specified by the fh or -1 if an error occured ¢

Out (fh,byte)
Writes byte to file handle specified by the fh.

1.45 pdimisc

CtrlC{()
CtrlD()
CtrlE ()
CtrlF ()
There functions checks if ctrl+c etc. key combination is pressed. If yes -1 else <
0 is
returned.

Long (
Word (
Byte (
Returns

a)
a)
a) (020+)
byte/word/long value what is on address specified by a.

ULong (a)

UWord (a)

UByte (a)
Returns unsigned byte/word/long value what is on address specified by a.
ULong (a) equals to Long(a) (both returns the same)

PutLong (a,b)
PutWord (a, b)
PutByte (a, b)
Writes byte/word/long value specified by b to address specified by a.

KickVersion (requied)
Returns TRUE if requied is lower or equal to your system version, else returns <
FALSE.

Rnd (top)
Returns a pseudo random number from range 0 to top-1. If the top value is lower
then zero, new seed is set. top must be a 1l6bit number.

RndQ (seed)
This is quite faster than Rnd(), but it returns a pseudo random 32bit number. <
Use the
result of this function for next seed of this function to get random numbers.

1.46 iconst
These constants are set always before compilation:
TRUE = -1
FALSE =0

NIL

|
o

PowerD 41/69
PI = 3.141592653589
OLDFILE = 1005 // for file opening

NEWFILE = 1006

Special (changeable)

// for file opening

constants:

OSVERSION = requied version of operation system (see:
Options

STRLEN

len:=STRLEN

SIZEOF_BYTE
SIZEOF_UBYTE
SIZEOF_WORD
SIZEOF_UWORD
SIZEOF_LONG
SIZEOF_ULONG
SIZEOF_FLOAT
SIZEOF_DOUBLE
SIZEOF_PTR
SIZEOF_BOOL
SIZEOF_VOID

)

length of last used

string
PrintF (’Hello\n’)

Type

BN O D BN DNDRE R

size constants:

OBJECT

size constants:

// len contains number 6

SIZEOF_bla = size of OBJECT named ’'bla’

1.47 PowerD.guide - Options

OPT defines local file options.

module,

all of the options will be used only in the module,

use the
module via

they are nonsensefull,

M

Options are in PowerD introduced by keyword ’'OPT’

it can be defined
everywhere outside PROCedures.

ODULE

If You define this in a module and use this

not in source where do You

(_)

H

<_>

keyword. Some of option keywords are always global since as local

all of these are signed with x.

will be known as global and will be used everywhere.

If You use keywords like HEAD or NOHEAD,

If GOPT used,

always the last one will be used.

all options

PowerD 42 / 69

HEAD/K* (default: ’startup.o’)
Sets startup #?.0 file, this file should be located in ’'d:1lib’ directory or it <
s name
must begin with ’*’ charecter and full path of custom startup object file.
This automaticaly switches NOHEAD swtich off.
(example: OPT HEAD=’ xhd2:myheads/best.o’)

NOHEAD/S+* (default: head is enabled)
This switch disables adding linkable startup head.
If You use this You must open all libraries and set all variables.

LINK/K* (default: no linkable file)

This allows You to define linking files in source code. By this way Yu can <
define all

object (#?.0) and link-library (#?.1ib) files. This keyword can be used more <>
times, so

You can define more linkable files.

This automaticaly sets OBJECT output name to default.

(example: OPT LINK=’xhdl:1lib/math040.1ib’,LINK='amiga.lib’)

OBJECT/K/S* (default: ’<progname>.o’)
This sets output object file name. If You define only ’'name.o’ it will be <>
located in
current directory, if You define it with path (eg: "hd0O:objects/prog.o’) it <
will
locate output file in directory given with path.

NOSTD/S+ (default: reads powerd.m module)
This switch disables reading of ’‘dmodules:lib/powerd.m’ module. It means: if <
You
enable this switch, You wont be able to use functions located in this module. <
I think
removing this is only needed if You have another set of default functions for <
PowerD.

DEST/K* (default: ’<progname>’ without extension ’.d’)
This is the same as OBJECT/K keyword, it only allows You to set executable <
name after
linking pass.

PRIVATE/S (default: only public data allowed)
This enables using of private data in the source.

DPRE/S, CPRE/S, APRE/S, EPRE/S (default: DPRE enabled)
These keywords sets precedence of signs/operators, default is DPRE.
See
Equations
for more information.

NOSOURCES/S (default: writing of source with errors enabled)
This switch allows You to switch off writing of source code with errors.

AMIGAE/S (default: disabled)
This switch raises compatibility with AmigaE programming language:
— object names and object item names are changed to lower case
— EPRE switch is switched on

PowerD 43 /69

— HANDLE keyword in PROC definition for exceptions allowed (it will be <>
skipped)

— EXCEPT DO changed to EXCEPTDO

— EXIT keyword changed TO EXITIF

OSVERSION/N (default: 0)
This sets minimal os version requied, it is currently quite useless.

NOFPU/S (default: fpu is enabled)
This switch allows You to use floating point computations without a <=

mathematical
coprocessor (FPU). This converts fpu instructions to non-fpu instructions and <
use
mathieeedoubbas.library and mathieeedoubtrans.library. I added this only to be ¢
able to
compile and try sources also on Amigas without fpu, the generated code is very <
slow,

so use it only if there is no another way.
Always the better way to use NOFPU is to use a module instead of the NOFPU <+
keyword in
the source. See
NOFPU
to get more information about it.

PowerD non-fpu instruction converter is not done, so use it with care!!!!!

CPU/N,FPU/N (default: 68020,68881)

This allows You to select a cpu to generate code for. 68000 and 68010 makes <>
currently

same code as 68020 and 68030. If 68040 or 68060 entered then coprocessor is <+
also

enabled. If You have eg: 68LC040, use: OPT CPU=68040,NOFPU. If You have 68030 <
and

68882 then use: OPT CPU=68030,FPU=68882. Be sure than there is currently no <>
difference

between 68881/882 and 68040/060. These optimizations will be added in future. <
If You

enter FPU=0, it is the same as NOFPU.

MODULE/K/S (default: no binary module)
This option causes binary module production. If MODULE keyword is alone, then <
PowerD
will generate module called ’<modname>.b’. If MODULE=’xxx.b’ is used, then <
PowerD will
generate module called ’'xxx.b’.
If You want use this option, then insert it to the first line of your source, <=
or
before all PowerD keywords, else the generated module will contain all <>
constants, etc.
from all used MODULEs.
If You want to create your own binary module, see:
binary module
OPTIMIZE/N (default: 0)
This set bits needed for optimizations:
- bit 0 - all unnecessary tst instructions removed
- bit 1 - muls/divs/moveq optimizations

PowerD 44 /69

If only OPTIMIZE (without number) used, optimizations will be set to -1.
All optimizations will be enabled by -1 (Sffff.ffff) value.

and You can use your own
OPTions

Examples:
OPT NOHEAD, LINK='algos.o’,LINK='d:1lib/amiga.lib’,DEST='calc’

This compiles source without a head to #7?.0 file and link this #?.0 file with <
algos.o
and amiga.lib files into the ’calc’ executable.

OPT OBJECT='"hd2:objects/proggy.o’,DEST="hd2:proggy’

This will generate the object file into 'hd2:objects/proggy.o’ and then it <
will be
everything linked into ’"hd2:proggy’

1.48 PowerD.guide - Preset user OPTions

Description:

This allows You to predefine Your own OPT keywords, currently are supported <=
only
single word keywords.
Most of these definitions should be defined in dmodules:powerd/options.m file. <«
This
file is supported from v0.09 it is always loaded before your source is compiled, <
so
never do anything with this file, if You don’t know what does it do!!!
Between SETOPT and ENDOPT can be everything You like, like constant <
definitions,
variable definitions, another OPTions, MODULEs, PROCedures etc.
This allows You to use OPT DOSONLY instead of MODULE ’startup/startup_dos’ and ¢
it 1is
shorter, isn’t it?

Syntax:
SETOPT name
put here everyhing you like
ENDOPT
Example:
This should defined be defined in dmodules:powerd/options.m file.

SETOPT IEEE
MODULE ’startup/startup_ieee’

PowerD 45/ 69

ENDOPT
and if You use in your code:
OPT IEEE

the module ’startup/startup_ieee’ will be processed.

1.49 PowerD.guide - NOFPU

If this OPTion set You must do something more to be able to <+
compile non fpu sources.
The first thing is to open mathieeedoubbas.library and mathieeedoubtrans.library <

Then
You shouldn’t use normal PowerD.lib, because some functions use fpu only code. <+
So set
NOSTD option and LINK='d:lib/powerd_ieee.lib’ to be linked instead. All these <
operations

are made in dmodules:startup/startup_ieee.m and dmodules:startup/ <«
startup_dos_ieee.m so
put eye on them.
See also d:lib/startup_ieee.ass and d:lib/startup_dos_ieee.ass.

If 'AI=ASMINFO/S’
cli
switch enabled, all fpu instructions will apear as a comment.

Currently works with this option only following functions and operators:

Sin(), Cos (), Tan(), ASin(), ACos(), ATan(), Sinh(), Cosh(), Tanh(), Sgrt(), Pow ¢

()
FAbs (), Ln(), Log()
other functions are fpu only!!!

+,-,%,/ (no \ (modulo))
1.50 cli
SOURCE/A - PowerD source file
DEST — Destination executable file
TOOBJECT/K — Destination object file
GM=GENMODULE /K - See:
external modules
CO=CHECKONLY/S - Only first pass, check for syntax errors
NS=NOSOURCE/ S — Disables source writing after errors
AI=ASMINFO/S — Generates more readable assembler source with some <
information
DS=DEBUGSYM/S - Compiles source with debug symbols (only way, how to <
debug)

It now works better, so You can debug also linked files
SDV=STARTDEBUGVALUE/N - Each compiled source starts with label counter from 0, <
this

PowerD 46 /69

can be changed. (useful for multiple source compiling)

NU=NOUNUSED/S — Disable writing of list of unused variables/procedures
O=0OPTIMIZE/N - same as OPT link opt} OPTIMIZE
I=INFO/S — When compilation is finished, some information is wrote <+
to
stdout.
CPU/N - same as
OPT
CPU
FPU/N - same as
OPT
FPU
NOFPU/S - same as
OPT
NOFPU
AUTHOR/S - This is guite useless, but who knows...
1.51 error

PowerD contains quite many error messages, and there is no a syntax error (be <

happy) ,
if you do a syntax error, it will tell you what (or at least where) you did <
wrong.
Currently if you do some mistake, an error message is repeated until you press <
Ctrl+cC
and stop compilation. These errors are something like forgotten apostrophe, <+
bracket,
comma etc. PowerD currently shows bad line numbers, so don’t look at it :7¢(, —
PowerD
tries to show a piece of source where an error occured, this may be sometimes <+
strange

mainly in Writing pass.

1.52 syntax

Tabulators should have size of 3. Preprocessor keywords must be at the <+
beginning of
the line.

1.53 diff

PowerD is based on AmigaE syntax, but PowerD has the syntax more flexible, here <+
will
follow differences between AmigaE and PowerD:
(It isn’t everything and in future I’11l expand it)

PowerD: AmigaE:

Operators:

PowerD

47 /69

a\b
alb
a&b
al'b
a<<b
a>>b
al<b
al>b

b:=++a

- (future)
- (future)
SIZEOF_x

Structures:

PROC x()
PROC x () (LONG) ...ENDPROC a
PROC x () (LONG, LONG=2) .. .ENDPROC a

EXITIF b

FOR x:=a TO b STEP 2

FOR x:=a TO b STEP c

FOR x:=0.1 TO 1.2 STEP 0.2
SELECT a

SELECT s

CASE 1 TO 10 DO s;

CASE s

DEFAULT DO s;

ENDSELECT

IFN s
WHILEN s

Constants:
FLAG A_1,A_2,A_3
0.123456 (FLOAT)
0.123456789 (DOUBLE)
Objects, Types:
OBJECT x

a:BYTE, b:UBYTE,
c:BOOL, d:FLOAT

Mod (a, b)
a OR b

a AND Db
Eor (a, b)
Shl (a,b)
Shr(a,b)

Not (a)

{a}

tmp:=a; a:=b; b:=tmp
>=

<=

b:=a--

‘a

{a} where "a’ if a function
SIZEOF x

PROC x ()

PROC x () ...ENDPROC a

PROC x()...ENDPROC a,?2

EXIT b

FOR x:=a TO b STEP 2
?
?

SELECT a
SELECT a OF b

CASE 1..10; s;
DEFAULT; s;
ENDSELECT

IF s=FALSE
WHILE s=FALSE

ENUM AB_1,AB_2,AB_3
SET AF_1,AF_2,AF 3
0.123456

?

OBJECT x
a:CHAR, b:CHAR
c:INT, d:LONG

PowerD

48 /69

DEF

a:BYTE, b:WORD, c:BOOL
a[l0] :LONG

al[]:LONG

1.54 ccode

ENDOBJECT

DEF

a,b,c

all10] :ARRAY OF LONG
a:PTR TO LONG

Compile your c source in to an object file and write an

external module

of it.

1.55 asmcode

Description:

From 0.05, you are able to write inlined assembler routines, it is currently <>

VERY

limited, so you can’t work with DEFined variables, this will be allowed in next <=

release
of PowerD.

PowerD currently doesn’t check if your assembler syntax is right, it only <+

COPIES the

assembler part of your source code to destination assembler source, so be <+

carefull with

the assembler syntax, if you do an mistake, PhxAss will leave with error code of <«

20.

Since asselbler doesn’t allow

or I*I
as comment beginnings.

and ' /% %/’ comments, you have to use ’';’ <«

I’11 eliminate all of this disadvantages in next releases.

Syntax:

ASM

here are your assembler routines

ENDASM

1.56 createhead

Description:

Header (resp. startup file)
the

is a piece of code what is run at the beginning of <

PowerD 49/69

executable. It usually makes some variable initiallisations, library opening etc <
Each
header should call function called 'main()’. It is usually written in assembler <+
to get
the best perfomance, but it can be written in PowerD as good.

Header module:

If you wrote a header, you should write also a module what contains in the <+
header
initialised but external variables (via ’"EDEF’) and OPT HEAD='xxx.0’ where xxx
is the header object file name in ’"d:1ib’, or ’'x’ and full path.

Example:
OPT HEAD='startup_tri.o’
MODULE ’dos’,’exec’,’intuition’,’graphics’

EDEF DOSBase, IntuitionBase, GfxBase

1.57 createlib

How to use a linked library:

The best way how to use linked libraries is to define it’s functions in a <+
module. To
be more simple for programmer is better to add in to the module line containing:

OPT LINK='linklibrary’

where linklibrary is your linked library name if it is in ’d:1ib’ drawer, if not <
, add

x’ before the linklibrary with full path (eg: "hd5:1lib/mylib.lib’). This will <>
add the

link library into the list of the link objects and after compilation everything <+

will be

linked.

This module should be in ’'dmodules:1ib’ drawer.

14

Function definition:

PowerD makes it possible to use different types of functions. First function <
type is
normal linked library function which allows LIST using. All used arguments are <>
loaded
into the stack in inverse order and then the function is called:

LPROC procname (args) (results)

LPROC is mostly used by C compilers, it parses arguments inverted from its <=
definition:

PowerD 50/69

x(a,b,c)
this moves to stack c then, b and then a, if You use a list as a last argument, <
all list
items will be inserted to stack in same order:
LPROC x(u,v,w:LIST OF LONG)
x(a,b,c,d,e, f)
this moves to stack f, e, d, c, b and a. This is quite dull when you want use <>
something
like this:
LPROC x(a,b,c,d)
n:=0
X (n++, n++, n++, n++)
this will copy to a 3, to b 2, to c 1 and to d 0.

Second is PowerD procedure compatible stack loading. It loads arguments in <
right order
but don’t (currently) allows the LISTs. These are also used for external <
procedures:

EPROC procname (args) (results)

This is quite more intelligent, but it doesn’t allow inline lists as a last <>
argument,
you can of course use normal lists (closed in: []).
EPROC x(a,b,c,d)
n:=0
X (n++, n++, n++,n++)
works correctly, moves 0 to a, 1 to b, 2 to ¢ and 3 to d.

Last one 1s best suited for assembler routines, which doesn’t use stack (it is <«

slower
than registers). Here is the limitation gave by count of registers on the cpu (<«
MC68k
allows 8 data, 5 address registers (don’t use a6 and a7) and 8 float registers. <«
PPC

allows about 25 data/address registers and 31 float registers.):
RPROC procname (args with registers) (results) [='asm’]

As you can see, it is possible to add an assembler source after RPROC <>
definition, this
way you can generate inlined functions. Be careful about the assembler source <>
you must
adhere right syntax:
- each line starts with tabulator ’"\t’ or some spaces or a label
— each line must be ended with linefeed ’\n’
- you must use right instruction set
- it is absolutely not affected by PowerD, it will be only copied instead of the
function call
- it is normal string, so you can use multi line
strings
How to build linked library:

First you have to generate object files, each object file should contain only <>
one
function. This may be done with OPT OBJECT in PowerD case. If you want to create ¢
an

PowerD 51/69

assembler routines, use export keyword (usually xdef). Copy all these objects <>
into a
single drawer, open shell, set there the drawer and enter ’join #?.0 as xxx.lib
", where
xxx 1s your library name. Then copy this file into ’'d:1ib’ drawer. Finaly you <=
should
write a module for this 1lib.
This way is possible to generate linked libraries from PowerD, Assembler, C <
etc.
objects, just select right function definition (LPROC/EPROC/RPROC) .

Examples:
LPROC printf (fmt:PTR TO CHAR,args:LIST)
EPROC PrintF (fmt:PTR TO CHAR, args:PTR)

RPROC PrintF (a0:PTR TO CHAR,al:LIST)

1.58 PowerD.guide - How to create Library

Currently it is not possible to make libraries in PowerD. When I will have <>
enough
information about it, I will of course include it.

1.59 PowerD.guide - How to create binary module

Warning:

When compiling binary modules, be sure that it doesn’t load any other modules, <
it is
currently unfinished and You can’t use EDEFs and #defines in binary modules. <+
Reading
binary modules is about 2-10 times faster then ascii modules, but it may cause <+
some
problems, so if some appear, use only ascii modules.
Is probably, that I will rewrite module format in future (to be much faster), <+
so don’t
delete your old ascii modules (better: backup them :).

Compiling:

If You define OPT MODULE in a #7?.d file, it will be compiled as a module into <>

#2.b
file. Second (better) way is to compile #?.m file (don’t forget the ’".m’). If <
does the

same .

Limitations:

PowerD 52 /69
Binary modules are currently quite limited, You can’t use neither code nor <
datalists,
You can use only
CONST
ants,
OBJECT
Sy
MODULE
S,
EPROC
, LPROC) and
LTIBRARY
definitions.
You can also use HEAD and LINK OPTions.
1.60 why
It is simple, I wanted to use fpu, but AmigaE wont work with it directly, —
used
bettermath modules (by Michal Bartczak) and later I did my own fpu modules, but <
it was
quite frustrating when I wanted add a to b to use a function. All that time I <

got an

idea to create my owm programming language,

never

use fpu and newer processors.

At the beginning of the 1998 I started to play with equation reading,

compilers,

etc. In the middle of 1998 I started working on PowerD.

In march 99 Wouter van Oortmerssen

AmigaE. At

this time I was sure to continue my developing.

because
of unsolvable

When I got Amiga (1993), I got some 3d raytracing programs and I was lost...

problems, but lastly I solved them all

(author of AmigaE) stopped developing if

because I was sure that AmigaE will <>

P

(_)

(Many times I wanted to stop it <

I

wanted to create my own 3d raytracing program that will be better then all other <

, but in

which programming language should I do it? I could work only with AMOS basic,

and it is

not good to do 3d raytracing program in basic.

(1994), it

is also not good programming language to create so big project

many MB

of assembler source).

Later (in

1995) I tried AmigaE. Wow,

my own
3d raytracing
bought

Blizzard 1230/50 with 16MB of RAM and FPU. AmigaE wasn’t enough at this time.

tried C,

program. I registered it in 1996.

I started to learn assembler

(it could have
Then I tried Pascal and C. One is worse then the second.
really fast and short programs!

Everything looked good, but I

<_7

<o

H

<_>

I started to work on <

H

I <«

PowerD 53/69

but returning max one value per function is incredibly few (AmigaE can return 3 <>
values) .
So I did something in AmigaE and something in C.

This was the time to create a language what will be good for everything!

1.61 install

Unpack the archive, copy everything into a drawer on your harddisk, add to your
startup—sequence:

Assign D: <drawer>
Assign DMODULES: D:Modules
Path D: D:Bin ADD

where <drawer> is path of PowerD directory.

Or click on the Install icon.

1.62 features

Features when comparing with C/C++:

+ multiple return values (8 for m68k, \ensuremath{\pm}25 for ppc)
+ lists can be defined/used everywhere you like/need, not on the definition only
+ more readable syntax
\ensuremath{\pm} some people says that "{}" is better then eg.: WHILE ENDWHILE, <
I think it is shorter
not better

Features when comparing with AmigakE:

+ more return values

+ more operators (like <<, >>, <|, >|, etc.)

+ more assign operators (like +=, *=, etc)

+ more intelligent equation computing (PowerD: 1+2x3=7, AmigaE: 1+2%3=9)

+ changable introduction of precedence

+ names can contain high/low letters in all cases

+ for object oriented programming you don’t have to use self.#7?, you can use <
only #7?

+ better polymorphism

+ more types (FLOAT, DOUBLE, BOOL, etc.)

+ fpu using

+ compilation to object files

+ automatic generation of external modules

+ linked library functions using

+ inline lists (OpenWindowTags/OpenWindowTagList)

+ IFN, WHILEN, ... for reverse condition (IF a<>10 is the same as IFN a=10)

slower

PowerD 54 /69

1.63 future

In next release:
— finish binary module support for much faster module reading
In progress or near future:

— use of math libraries instead of fpu instructions

— binary modules support for much faster module reading

— complete preprocessor

- object oriented programming

— inteligent optimizations

— elimination of bugs

- to be more "fool-proof"

— link libraries with useful functions
- audio/video/picture loading/playing/showing/saving
— 3d functions for 3d games

— PowerPC support

— Library compiling

In plan:

— AmigaNG support (really not sure)

- AmirageK2/QNX Neutrino support

- PowerPC G4/AltiVec (?) support

— VisualD interface

- Debugger

— Get some (small) money for it

— Better manual (this is the most dificult)

— To be modular (eg.: add a module to generate code for other processor)

In vision:

- Enterprise support (NCC1701D or better requied :)

This I will probably never do:
- Windows95/98/2000/3000/4000/NT version

If you have some ideas, send me an
e-mail

1.64 history

Version 0.11 (20.1.2000) (dc.e: 11066 lines, 361271 bytes):
- added
(ascii 184)
decimal number separator

PowerD 55/69

— improved
LOOP x
where x can be now constant/number
- added
binary module
support (still very limited)
- added
MODULE
OPTion

- improved procedure/function finding routines, up to 28 times faster
— added few new functions:
UByte (), UWord(), ULong(), HiBit (), LoHit(), BitCount (),BitSize()
- improved startup files, arg variable now work
- added startup_dosarg.m module and DOSARGONLY OPTion to allow arg variable <
with dos
opening only
— inlined
IF
now work better
- added one new example
— no more linker error like line too long or similar
- removed some bugs in modules and added ExecBase variable
- removed some other bugs

Version 0.10 (5.1.2000) (dc.e: 9563 lines, 320559 bytes):
This release has nothing from big improvements, because some heavy bugs appeared <+
, SO
please wait, again...
- added

number separator
- now You can use sth like a:=&main where main is a procedure
- added
octal
number support
- now should work nofpu floats correctly
- removed heavy bug with strings (didn’t work \s, \d, etc right after apostrophe <
)

- removed some bugs

Version 0.09 (31.12.1999):

- added
NEWFILE/OLDFILE
constants
- added new
OPTion
and

cli argument
called OPTIMIZE for optimizations
- new
SETOPT/ENDOPT
keywords allows You to set your custom OPTions
— improved DEBUGSYM cli switch
- now works inlined IF, WHILE, etc. again (like: a:=IF b THEN c ELSE d)
- now odd byte/word array or string length allowed
- added some optimizations including output of gained bytes, but don’t trust it <«
too much

PowerD 56 /69

- removed many bugs with nofpu floats (but not all :()
- some examples added

- some new functions

- some bugs removed

22.12.1999 - My Develop partition died. I lost all of my developed software, <

but I
backuped whole PowerD source and it’s datas two days ago :), so this will be <
only small
slow down until I will get all needed software back :(. And I still don’t have <
my
Blizzard...

Version 0.08 (20.12.1999):
- added some
00
features
- added
NOFPU
, CPU and FPU
OPTions
and
CLI
arguments.
- added #7?_ieee.m startup modules to be used instead of NOFPU option
- added powerd_ieee.lib (without fpu requirements)
— added small asm code optimizer
- added TPROC definition for polymorphism.
- now is allowed ’'ELSE command’ instead of ’'ELSE DO command’
- now is allowed 'FOR a TO b command’ instead of 'FOR a TO b DO command’
- removed bug: a+=x where x is a variable didn’t work (thanx to Mauro Fontana)
- removed enforcer hits on errors
— and many small improvements

Version 0.07 (5.12.1999):
— ALLWAYS changed to ALWAYS, really silly mistake :)
- DPRE, CPRE, EPRE, APRE
OPTions
added.
- added && and || in conditions (AND and OR works ofcourse too)
- totally rewrote equation/condition generator, now is allows bigger freedom of

programming.
- removed enforcer hits
- improved
OPTions
, now global and local options, DEST works, OBJECT works
- added:
NEW, END, NEG, etc.
keywords
index

added to this document

Version 0.06 (21.11.1999):
- some bugs removed (:=: didn’t work in 0.05 and 0.05b)
— improved LOOP command, idea by Marco Antoniazzi
— improded this document, I forgot to include here many PowerD abilities:

PowerD 57 /69

JUMP

- IFN, ELSEIFN
documented

— WHILEN, ELSEWHILEN
documented

— UNTILN
documented

— line numbers on errors are now exact (I hope)

Version 0.05b (16.11.1999):
- x++/x-— added/subtracted two instead of one and made wrong things...
- pad bytes in lists now works

Version 0.05 (15.11.1999):
- assignations changed from eg: :x= to *= to be more compatible
- new: ASM and
APROC ()
- many bugs removed
— added differences between
AmigaE and PowerD
in this documantation.

Version 0.04 (7.11.1999):
- improved constant finding (up to 28 times faster!!!)
— added more modules
- removed heavy bug in object reading (eg: example GadToolsTest.d took about 800 <«

kB of
memory and about 24000 allocations, now about 350 kB and 14000 allocations, <
compiling
time was about 90 seconds on unexpanded Al1200, now takes about 35 seconds)
- added

INFO/S
switch in cli.

Development is currently quite slow because my blizzard ppc is broken down, <+
and I have
to develop powerd on unexpanded Al200 with hd :(

Version 0.03 (10.10.1999):
— added some functions (Val(), RealVal(), RealStr(), etc.) to PowerD.lib
- removed many more or less important bugs

Following versions I uploaded to aminet, but there were problems with main <
german site,
and I’m not sure if someone got it. I think, it’s no so important, because in <
this time
I eliminated (very) many bugs.
Version 0.02 (7.10.1999):
- now works with linked functions what has not arguments
— improved returning values
- added support for 192 and higher characters ascii names, you can use now <
variables/
procedures named like: OUA, testovani, etc. See
0-255
, this is good

PowerD 58 /69

for non-english programmers.
- added unions in object definition. See
UNIONs
- removed some enforcer hits and small bugs

Version 0.01 (30.9.1999):
First public release, history until this version is top secret.

1.65 bugs

If you found some bugs, send me an
e-mail

Known bugs list:
- If you create too deep equations (too many different priorities, it can crash <+
or
generate bad code)

1.66 limits

Each OBJECT member name can have maximally 16 synonyms.
Count of return values is limited by count of data registers (68k=8(+8fpu),ppc= <
cca.z2b)

1.67 requires

Requirements:

An Amiga or a compatible computer
0S 3.0 (V39+)
HD
If you work with floats, it requires fpu.
PhxAss (by Frank Wille)
PhxLnk (by Frank Wille)
Recomendations:

Lots of RAM, 16 or 32 MB should be enough for very large projects.
Fasted CPU, 030 should be enough.
FPU, 68881 should be enough :7)

Succefully Tested configurations:

A1200+HD+3.0
A600+MTec030/40+882/40+2MB+16MB+3.1+HD
A1200+Blizzardl1230IV/50+882/50+16MB+3.1+HD
A1200+Blizzardl240/40+32MB+3.0+HD
A1200+Blizzard603e/160+040/25+64MB+3.1+HD

PowerD

59/69

1.68 register

PowerD is
If you like
Rewards are

I didn’t do

1.69 thanx

phaseb -
gw2k -
mxcrosoft -

currently FREEWARE.
it, please e-mail me.
also welcome.

it for money, but living(programming) without it is quite difficult.

for their wonderful blizzards and for staying with (classic) Amiga
I really don’t know if thanx or not at this moment
for producing still the worst operating system :7%)

Special thanks to:

Mauro Fontana - for his bug reports and ideas

Marco Antoniazzi - for his bug reports and ideas

Przemyslaw Szczygielski - for his oo advices

Tomasz Wiszkowski — for his advices, comments, nice emails, CreativE and <
more

and to every body who sent me supporting emails.

1.70 author

Snail mail:

Martin Kuchinka
Amforova 1930/17
Praha 5, 155 00

Czech Republic

E-Mail:

kuchinka@k332.feld.cvut.cz (preffered)
kuchinka@student.fsid.cvut.cz
kuchinka@student.fsik.cvut.cz
kuchinka@pruvodce.cz

WIWW :

http://lide.pruvodce.cz/kuchinka

My Amiga configuration:

PowerD

60 /69

Amiga:
CPU:
RAM:

HD:
CD:

Modem:

Video:

Audio:

A1200

MC68040/25,

64 MB Fast
Seagate Medalist 3 GB
GoldStar 6x

Rockwell 33k6 bps
AGA, old VGA monitor
(Hyper-Bass Sound)

Paula,

1.71 ascii

Value
0

O ~J o U b w N

e e e
g W oW

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39
40

ASCIT
"\O"
"\jool"
"\j002"
"\3003"
"\j004"
"\§005"
"\3006"
"\ ! "
"\3008"
"\t"
"\n"
"\V"
"\3012"
"\b"
"\j014"
"\3015"

"\j016"
"\3017"
"\3018"
"\3019"
"\3020"
"\3021"
"\3022"
"\3023"
"\3024"
"\3025"
"\3026"
"\e"

"\3028"
"\3029"
"\3030"
"\§031"

non
nn

nmnmnn

"#"
n $"
"%"
n & n
nwrmn

n ("

JVC PC-V66

Value
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104

PPC603e/160

ASCIT
n @ n
"A"
"B n
n C n
"D n
"E n
"F "
n G"
n H n
n I n
n J"
"K"
n L n
"M"
"N"
n O"

" P n
n Q n
n R n
n S n
n T n
n U "
n v n
n W n
n X n
n Y n
n Z n
n [n
n \ n
n] n
nAmn
n n

mayn

n a n
n b n
n c n
n d n
n
n f n

n g"
"h"

128
129
130
131
132
133
134
135
136
137
138
139
130
141
142
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165
166
167
168

Value ASCII

"\j128"
"\j129"
"\j130"
"\j131"
"\j132"
"\§133"
"\j134"
"\§135"
"\j136"
"\§137"
"\j138"
"\9139"
"\§130"
"\j141n
"\j142"
"\j143"

"\j144"
"\j145"
"\j1l46"
"\j147"
"\j148"
"\j149"
"\§150"
"\j151"
"\j152"
"\§153"
"\j154"
"\§155"
"\j156"
"\§157"
"\j158"
"\J159"

newn
new
ngn
ns\yensn

"§"

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

224
225
226
227
228

230
231
232

Value ASCII

uAn
"An
"An
"An
uAn
uAn
npn
"C n
"E n
"E n
u]:j n
uE n
n i n
n I’ n
n i n
n I n

npn
"Nn
|l©n
"On
uén
vv@n
"('jll

"S\timesS$S"

non
uUn
uon
"[’ju
"le
"Yn
npn
npn

PowerD 61/69

a1 my 105 "y 169 "o 233 men

42 "*" 106 "j" 170 manmn 234 "é"

43 mgr 107 "k" 171 " 235 man

a4 v, 108 "1n 172 "\ensuremath{\lnot}" -
236 miv

45 m-n 109 "m" 173 nov 237 "in

a6 m.v 110 "na" 174 "@" 238 "iv

47 /v 111 "o" 175 nov 239 "in

48 "o" 112 "p" 176 "\textdegree{}" 240 " ¢
6"

49 " 113 "g" 177 "\ensuremath{\pm}" 241 <«

"ﬁ"

50 "on 114 npe 178 "$r2sm 242 "on

51 "3 115 "s" 179 "sA3s" 243 6"

52 man 116 "t" 180 mom 244 "M

53 mgn 117 "u" 181 "$\mathrm{\mu}$" 245 -
"6"

54 men 118 "y 182 "q" 246 "&"

55 mn 119 "w" 183 men 247 "$\divs"

56 ng" 120 "x" 184 "o 248 "g"

57 "on 121 ny" 185 "$h1sgn 249 mu"

58 v 122 "g" 186 "on 250 "q"

59 ;v 123 (" 187 "»" 251 "g"

60 "<" 124 mn 188 "u" 252 "g"

61 n=n 125 "y 189 "pn 253 A

62 m>v 126 "~v 190 "u" 254 "pn

63 "on 127 "\j127" 191 g 255 "y

1.72 PowerD.guide - Index

#define
macro definition

++
post/pre incrementation

post/pre decrementation

ABS ()
constant: absolute

ACOS ()
constant: arcus cosinus

ALWAYS
WHILE definition

AMIGAE
OPT: AmigaE compatibility

APRE
OPT: assembler like precedences

PowerD 62 /69

APROC
assembler-only procedure

APTR
same as PTR

ASIN ()
constant: arcus sinus

ASM
inline assembler code

ATAN ()
constant: arcus tangents

BPTR
same as PTR

BYTE
global data definition

BYTE
type

CASE
SELECT definition

CEIL()
constant: ceil value

CHAR
same as UBYTE

CONST
CONST definition

COS ()
constant: cosinus

COSH ()
constant: hyper cosinus

CPRE
OPT: c/c++ like precedences

CPTR
same as PTR

CPU
OPT: selects processor for assembler generator

DEC
multivariable decrementation

DEF
variable definition

PowerD 63 /69

DEFAULT
SELECT definition

DEFB
BYTE variable definition

DEFD
DOUBLE variable definition

DEFF
FLOAT variable definition

DEFL
LONG variable definition

DEFUB
UBYTE variable definition

DEFUL
ULONG variable definition

DEFUW
UWORD variable definition

DEFW
WORD variable definition

DO
multiple commands on single line

DOUBLE
global data definition

DOUBLE
type

DPRE
OPT: default/PowerD precedences

DTO
FOR definition

EDEF
external object variable definition

ELSE
IF definition

ELSEIF
IF definition

ELSEIFN
IF definition

ELSEWHILE
WHILE definition

PowerD

64 /69

ELSEWHILEN
WHILE definition

END
multiple variable deallocation

ENDASM
end of inline assembler code

ENDFOR
FOR definition

ENDIF
IF definition

ENDLOOP
LOOP definition

ENDOPT
SETOPT definition

ENDPROC
end of procedure definition

ENDSELECT
SELECT definition

ENDUNION
OBJECT: unions

ENDWHILE
WHILE definition

ENUM
ENUM constant definition

EPRE
OPT: AmigaE link precedences

EPROC
external object PROC definition

EXCEPT
procedure exception definition

EXCEPTDO
procedure exception definition

EXTIT
early exit from loops

EXITIF
early exit from loops

EXITIFN
early exit from loops

PowerD

65/69

EXP ()
constant: exponent

FAC ()
constant: factorial

FALSE
internal constant: 0

FLAG
FLAG constant definition

FLOAT
type

FLOOR ()
constant: floor wvalue

FOR
FOR definition

FPU

OPT: selects coprocessor for assembler generator

GIVES
EXITIF: same as IS

GIVING
EXITIF: same as IS

GOPT
global options

HEAD
OPT: selects linkable head file

IF
IF definition

IFN
IF definition

INC
multiple variable incrementation

INCBIN
include binary file

INT
same as WORD

IS

return a list of values (it can be used in many cases)

JUMP
Jump to a label

PowerD 66 /69

LIBRARY
LIBRARY definition

LINK
OPT: add a link to linking list

LIST
inlined list of arguments

LIST OF
inlined list of types arguments

LN ()
constant: natural logarythm

LOG ()
constant: decimal logarythm

LONG
global data definition

LONG
type

LOOP
LOOP definition

LPROC
external object C compatible procedure definition

MODULE
module definition

MODULE
OPT: generates binary module

NEG
multiple variable negation

NEG ()
constant: negative value

NEW
multiple variable memory allocation

NEWFILE
internal constant: 1006

NEWUNION
OBJECT: unions

NIL
internal constant: O

NOFPU
OPT: disables coprocessor for assembler generator

PowerD 67 /69

NOHEAD
OPT: link executable file without a head

NOSOURCES
OPT: don’t write source lines after errors

NOSTD
OPT: don’t read d:lib/powerd.m module

NOT
multiple variable not-ation

OBJECT
OBJECT definition

OBJECT
OPT: force generate object instead of object file

OF
OBJECT: linking objects

OLDFILE
internal constant: 1005

OPT
local file options

OPTIMIZE
OPT: enable optimizations

OSVERSION
OPT: minimal operating system version

PI
internal constant: 3.141592653589

POW ()
constant: power

PRIVATE
OPT: enable private data

PRIVATE
OBJECT: private data generation

PROC
procedure definition

PTR
type

PTR TO
type

PUBLIC
OBJECT: public data generation

PowerD 68 /69

RAD ()
constant: radian value

REPEAT
REPEAT definition

RETURN
RETURN values of procedures

RETURNING
EXITIF: same as IS

RPROC
arguments use registers instead of stack

SELECT
SELECT definition

SET
SET constant definition

SETOPT
Preset user OPTions

SIN ()
constant: sinus

SINGLE
same as FLOAT

SINH ()
constant: hyper sinus

SIZEOF
size of type/object

SQORT ()
square root

STRING
string definition

TAN ()
constant: tangent

TANH ()
constant: hyper tangent

THEN
IF definition

TO
FOR definition

TO
SELECT: arrays

PowerD

69 /69

TRUE

internal constant:

UBYTE
type

ULONG
type

UNION
type

UNTIL
REPEAT definition

UNTILN
REPEAT definition

UWORD
type

WHILE
WHILE definition

WHILEN
WHILE definition

WORD
type

	PowerD
	main
	PowerD.guide - Read This First
	PowerD.guide - Important information
	PowerD.guide - Rules of programming in PowerD
	help
	what
	values
	strings
	const
	def
	macro
	types
	object
	equa
	single
	PowerD.guide - Constant equations
	PowerD.guide - Function using
	PowerD.guide - Returning values
	PowerD.guide - PROC definition
	PowerD.guide - REPROC returning values
	PowerD.guide - Using MODULEs
	emodule
	except
	global
	oo
	PowerD.guide - Polymorphism
	PowerD.guide - LOOP definition
	PowerD.guide - FOR definition
	while
	PowerD.guide - REPEAT definition
	PowerD.guide - IF definition
	select
	do
	then
	exit
	jump
	newend
	library
	linklib
	ifunc
	pdlstr
	pdlmath
	pdlintui
	pdldos
	pdlmisc
	iconst
	PowerD.guide - Options
	PowerD.guide - Preset user OPTions
	PowerD.guide - NOFPU
	cli
	error
	syntax
	diff
	ccode
	asmcode
	createhead
	createlib
	PowerD.guide - How to create Library
	PowerD.guide - How to create binary module
	why
	install
	features
	future
	history
	bugs
	limits
	requires
	register
	thanx
	author
	ascii
	PowerD.guide - Index

